The Martian Atmospheric Boundary Layer
نویسندگان
چکیده
[1] The planetary boundary layer (PBL) represents the part of the atmosphere that is strongly influenced by the presence of the underlying surface and mediates the key interactions between the atmosphere and the surface. On Mars, this represents the lowest 10 km of the atmosphere during the daytime. This portion of the atmosphere is extremely important, both scientifically and operationally, because it is the region within which surface lander spacecraft must operate and also determines exchanges of heat, momentum, dust, water, and other tracers between surface and subsurface reservoirs and the free atmosphere. To date, this region of the atmosphere has been studied directly, by instrumented lander spacecraft, and from orbital remote sensing, though not to the extent that is necessary to fully constrain its character and behavior. Current data strongly suggest that as for the Earth’s PBL, classical Monin‐Obukhov similarity theory applies reasonably well to the Martian PBL under most conditions, though with some intriguing differences relating to the lower atmospheric density at the Martian surface and the likely greater role of direct radiative heating of the atmosphere within the PBL itself. Most of the modeling techniques used for the PBL on Earth are also being applied to the Martian PBL, including novel uses of very high resolution large eddy simulation methods. We conclude with those aspects of the PBL that require new measurements in order to constrain models and discuss the extent to which anticipated missions to Mars in the near future will fulfill these requirements.
منابع مشابه
Martian Meso-/micro-scale Winds & Surface Energy Budget
Regional, diurnal and seasonal variations of surface temperature are particularly large on Mars. This is mostly due to the Martian surface remaining close to radiative equilibrium. Contrary to most terrestrial locations, contributions of sensible heat flux (i.e. conduction/convection exchanges between atmosphere and surface) to the surface energy budget [hereinafter SEB] are negligible on Mars ...
متن کاملLarge-eddy simulation of turbulent flow over an array of wall-mounted cubes submerged in an emulated atmospheric boundary-layer
Turbulent flow over an array of wall-mounted cubic obstacles has been numerically investigated using large-eddy simulation. The simulations have been performed using high-performance computations with local cluster systems. The array of cubes are fully submerged in a simulated deep rough-wall atmospheric boundary-layer with high turbulence intensity characteristics of environmental turbulent fl...
متن کاملOn modeling boundary - layer depths , dust and cloud at the Phoenix lander site
Introduction: Dust suspended in the Martian atmosphere is crucial in determining the thermal and dynamical conditions. Diurnal variation of dust, waterice and boundary-layer characteristics at the NASA Phoenix lander site are investigated using a onedimensional Atmospheric Boundary Layer (ABL) model and a Mars Microphysical Model (MMM). The diurnal cycle of temperature measured by the Phoenix l...
متن کاملSimulation of entrainment near a density stratified layer: Laboratory experiment and LIDAR observation
In this paper a simple qualitative model of the growth of a mixed layer adjacent to a uniform layer with a stably stratified layer is presented. The depth variations of mixed layer can be estimated from direct measurements. The Entrainment of a stably stratified layer into a turbulent mixed layer in a confined region was studied in laboratory for different Richardson numbers. The internal waves...
متن کاملRevealing the impact of changing land use of the annual spatiotemporal boundary layer height (Kermanshah Case Study)
Introduction Atmospheric boundary layer (ABL), is the lowest part of the atmosphere. Its behavior is directly influenced by its contact with earth surface. On earth it usually responds to changes in surface radiative forcing in an hour or less. In this layer physical quantities such as flow velocity, temperature, moisture, etc., display rapid fluctuations (turbulence) and vertical mixing is st...
متن کامل